

Outside Catchment Area, Area	= 8533	m^2	(C=	0.25)
THE SITE, Area	= 12922	m^2	(C=	0.95)

Calculation of Design Runoff of the Proposed Development,

For the design of drains inside of the site, Catchment Area + The Site/2

 $\Sigma Q = \Sigma 0.278 C i A$

 m^2 = 8533/2+12922/2

= 10727.5

= 0.0107275 km^2

 $= 0.14465 \text{ L/ H}^{0.2} \text{A}^{0.1}$

 $= 0.14465*176/1^{0.2}*10727.5^{0.1}$ = 10.064 min

(50 yrs return period, Table 3a, Corrigendum 2024, i $= 1.111*a/(t+b)^{c}$ SDM) and (11.1% increase due to climate change)

 $= 1.111*505.5/(10.064+3.29)^{0.355}$

= 223.8

= 0.278*0.25*223.8*0.0042665+0.278*0.95*223.8*0.006461Therefore,

> = 0.4482m³/sec = 26893lit/min

Provide 525UC (1:175) is OK

For Outfall

Therefore, Q = 0.4482*2

> = 0.8964m³/sec = 53787lit/min

Provide 750mm dia concrete pipe (1:150) is OK (refer to next page)

Geotechnical Engineering Office, Civil Engineering and Development Department The Government of the Hong Kong Special Administrative Region

GEO Technical Guidance Note No. 43 (TGN 43) Guidelines on Hydraulic Design of U-shaped and Half-round Channels on Slopes

Check 750mm dia. Pipes by Colebrook-White Equation

$$V = -\sqrt{(8gDs)} \log(\frac{ks}{3.7D} + \frac{2.51v}{D\sqrt{(2gDs)}})$$

where:

Therefore, design V of pipe capacity

CATCHPIT WITH TRAP (SHEET 1 OF 2)

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT SCALE 1:20 DRAWING NO.

DATE JAN 1991

C2406 /1

卓越工程 建設香港

We Engineer Hong Kong's Development

ALTERNATIVE TOP SECTION FOR PRECAST CONCRETE COVERS / GRATINGS

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE SHALL BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2 OR F2 AS APPROPRIATE.
- 4. FOR DETAILS OF JOINT, REFER TO STD. DRG. NO. C2413.
- 5. CONCRETE TO BE COLOURED AS SPECIFIED.
- UNLESS REQUESTED BY THE MAINTENANCE PARTY AND AS DIRECTED BY THE ENGINEER, CATCHPIT WITH TRAP IS NORMALLY NOT PREFERRED DUE TO PONDING PROBLEM.
- 7. UPON THE REQUEST FROM MAINTENANCE PARTY, DRAIN PIPES AT CATCHPIT BASE CAN BE USED BUT THIS IS FOR CATCHPITS LOCATED AT SLOPE TOE ONLY AND AS DIRECTED BY THE ENGINEER.
- FOR CATCHPITS CONSTRUCTED ON OR ADJACENT TO A FOOTPATH, STEEL GRATINGS (SEE DETAIL 'A' ON STD. DRG. NO. C2405 /2) OR CONCRETE COVERS (SEE STD. DRG. NO. C2407) SHALL BE PROVIDED AS DIRECTED BY THE ENGINEER.
- 9. IF INSTRUCTED BY THE ENGINEER, HANDRAILING (SEE DETAIL 'J' ON STD. DRG. NO. C2405 /5; EXCEPT ON THE UPSLOPE SIDE) IN LIEU OF STEEL GRATINGS OR CONCRETE COVERS CAN BE ACCEPTED AS AN ALTERNATIVE SAFETY MEASURE FOR CATCHPITS NOT ON A FOOTPATH NOR ADJACENT TO IT. TOP OF THE HANDRAILING SHALL BE 1 000 mm MIN. MEASURED FROM THE ADJACENT GROUND LEVEL.
- 10. MINIMUM INTERNAL CATCHPIT WIDTH SHALL BE 1 000 mm FOR CATCHPITS WITH A HEIGHT EXCEEDING 1 000 mm MEASURED FROM THE INVERT LEVEL TO THE ADJACENT GROUND LEVEL. AND, STEP IRONS (SEE DSD STD. DRG. NO. DS1043) AT 300 ℃ STAGGERED SHALL BE PROVIDED. THICKNESS OF CATCHPIT WALL FOR INSTALLATION OF STEP IRONS SHALL BE INCREASED TO 150 mm.
- FOR RETROFITTING AN EXISTING CATCHPIT WITH STEEL GRATING, SEE DETAIL 'G' ON STD. DRG. NO. C2405 /4.
- SUBJECT TO THE APPROVAL OF THE ENGINEER, OTHER MATERIALS CAN ALSO BE USED AS COVERS / GRATINGS.

REF.	REVISION	SIGNATURE	DATE
-	FORMER DRG. NO. C2406J.	Original Signed	03.2015
Α	MINOR AMENDMENT.	Original Signed	04.2016

CATCHPIT WITH TRAP (SHEET 2 OF 2)

卓越工程 建設香港

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

 SCALE 1:20
 DRAWING NO.

 DATE JAN 1991
 C2406 /2A

We Engineer Hong Kong's Development

Figure 8.10 - Typical Details of Catchpits

Figure 8.11 - Typical U-channel Details